Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vascul Pharmacol ; 142: 106950, 2022 02.
Article in English | MEDLINE | ID: covidwho-1555190

ABSTRACT

Coagulopathy in severe COVID-19 is common but poorly understood. The purpose of this study was to determine how SARS-CoV-2 infection impacts histone levels, fibrin structure, and endogenous thrombin potential in the presence and absence of endothelial cells. We studied individuals with SARS-CoV-2 infection and acute respiratory distress syndrome at the time of initiation of mechanical ventilation compared to healthy controls. Circulating histone-DNA complexes were elevated in the plasma of COVID-19 patients relative to healthy controls (n=6, each group). Using calibrated automated thrombography, thrombin generation was altered in COVID-19 patient plasma samples. Despite having increased endogenous thrombin potential, patient plasma samples exhibited prolonged lag times and times to peak thrombin in the presence of added tissue factor and PCPS. Strikingly different results were observed when endothelial cells were used in place of tissue factor and PCPS. While healthy control plasma samples did not generate measurable thrombin after 60 min, plasma samples from COVID-19+ patients formed thrombin (mean lag time ~20 min). Consistent with the observed alterations in thrombin generation, clots from COVID-19 subjects exhibited a denser fibrin network, thinner fibers and lower fibrin resolvability. Elevated histones, aberrant fibrin formation, and increased endothelial-dependent thrombin generation may contribute to coagulopathy in COVID-19.


Subject(s)
COVID-19 , Histones , DNA , Endothelial Cells , Humans , SARS-CoV-2 , Thrombin
2.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-838593

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Protein Biosynthesis , RNA Splicing , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Interferons/metabolism , Protein Transport , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/metabolism , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL